Skip to main content

Faculty Information

Despina Sitara, PhD, MSc, BSc

Associate Professor
Basic Science and Craniofacial Biology
345 East 24th Street, room 902C, New York, NY 10010
Phone: 212-998-9965
Fax: 212-995-4087
E-mail: ds199@nyu.edu

EDUCATION

Post-doctoral training, Bone Biology, Harvard School of Public Health, Boston, US 2010
Post-doctoral training, Endocrinology / Bone Biology, Harvard School of Dental Medicine, Boston, US 2008
PhD, Endocrinology, Queen Mary University of London, London, UK 2004
MSc, Molecular Genetics, University of Bristol, Bristol, UK 2000
BSc, Biomedical Sciences, University of the West of England, Bristol, UK 1998

HONORS/CREDENTIALS

  • 2014 Goddard Junior Faculty Fellowship (NYU)
  • 2012 Career Enhancement Award, American Society for Bone & Mineral Research (ASBMR)
  • 2006 Dean's Scholars Award from Harvard School of Dental Medicine
  • 2006 John Haddad Young Investigator Award, Advances In Mineral Metabolism (AIMM) / ASBMR
  • 2005 Dean's Scholars Award from Harvard School of Dental Medicine
  • 2004 Young Investigator Award, American Society for Bone & Mineral Research (ASBMR)

RESEARCH INTERESTS / PROFESSIONAL OVERVIEW

The focus of our research is to understand the role of endocrine factors in the pathogenesis of chronic diseases such as chronic kidney disease, heart disease, obesity, and diabetes. Specifically, we study the interplay between the skeleton and the cardio-renal system through mineral homeostasis, whole-body energy and glucose metabolism, hematopoiesis, and other processes. In addition, we study the mechanisms by which bone interacts with the bone marrow environment and how the mineral content of bone influences the fate of hematopoietic stem cells. For our studies we use genetically altered mouse models and employ a variety of approaches including generation of bone marrow chimeras, molecular biology, biochemistry, histology, immunohistochemistry, flow cytometry, and cell culture.

CURRENT FUNDING

  • Department of Defense (DoD)
  • MEGA-GRANTS Initiative Fund

REPRESENTATIVE PUBLICATIONS

Complete listing available on the NYU Health Sciences Library site.

Search PubMed for articles.

  1. Babitt JL and Sitara D. Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease. Curr Op Nephrol Hypertens 2019;28(4):304-310.
  2. Beck L and Sitara D. Animal Models of Phosphorus Homeostasis. Curr Mol Biol Rep. 2019;5(1):34-47.
  3. Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S, Sitara D. Inhibition of Fibroblast Growth Factor (FGF-23) signaling rescues renal anemia. FASEB J. 2018;32(7):3752-3764.
  4. Coe LM, Vadakke Madathil S, Casu C, Lanske B, Rivella S, Sitara D. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J Biol Chem. 2014;289(14):9795-810.
  5. Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. Am J Pathol. 2014;184(3):827-41.
  6. Yuan Q, Sitara D, Sato T, Densmore M, Saito H, Schüler C, Erben RG, Lanske B. PTH ablation ameliorates the anomalies of Fgf23-deficient mice by suppressing the elevated vitamin D and calcium levels. Endocrinology. 2011;152(11):4053-61.
  7. Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, Yamana K, Neff L, Atfi A, Coillard L, Sitara D, Maeda Y, Warming S, Jenkins NA, Copeland NG, Horne WC, Lanske B, Baron R. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signalling in growth plate chondrocytes. Dev Cell. 2010;19(4):533-46.
  8. Chu EY, Fong H, Blethen FA, Tompkins KA, Foster BL, Yeh KD, Nagatomo KJ, Matsa-Dunn D, Sitara D, Lanske B, Rutherford RB, and Somerman MJ. Ablation of systemic phosphate-regulating gene fibroblast growth factor 23 (Fgf23) compromises the dento-alveolar complex. Anatomical Record. 2010;293(7):1214-1226.
  9. Greenblatt MB, Shim JH, H, Zou W, Sitara D, Schweitzer M, Hu D, Lotinum S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, and Glimcher LH. A MAPK pathway essential for bone homeostasis. J Clin Invest. 2010;120(7): 2457-2473.
  10. Fong H, Chu EY, Tompkins KA, Foster BL, Sitara D, Lanske B, Somerman MJ. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol. 2009;80(8):1348-1354.
  11. DeLuca S, Sitara D, Kang K, Marsell R, Jonsson K, Taguchi T, Erben RG, Razzaque MS, Lanske B. Amelioration of the premature aging-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23. J Pathol. 2008;216(3):345-355.
  12. Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schüler C, Erben RG, Lanske B. Genetic evidence of serum phosphate-independent functions of Fgf-23 on bone. PLoS Genetics. 2008;4(8):e1000154.
  13. Sitara D, Razzaque MS, St-Arnaud R, Taguchi T, Erben RG, Lanske B. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23 null animals. Am J Pathol. 2006;169(6):2161-2170.
  14. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 is a vitamin D-mediated process. FASEB J. 2006;20(6):720-722.
  15. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Jüppner H, Lanske B. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23:421-432.